If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+5w=403
We move all terms to the left:
w^2+5w-(403)=0
a = 1; b = 5; c = -403;
Δ = b2-4ac
Δ = 52-4·1·(-403)
Δ = 1637
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1637}}{2*1}=\frac{-5-\sqrt{1637}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1637}}{2*1}=\frac{-5+\sqrt{1637}}{2} $
| 3(4s+9)=30s+ | | 3(4s+9)=30 | | 2(2l+9)=30l= | | 0.3x^2=2÷3x-2x^2 | | 5x-3-18=x | | (e-6*8=32 | | 9y^2-9=0 | | 6x-54=x-18 | | (e-4)*4=16 | | 2/5x+11=3/4x-6 | | 4g-10=10 | | 5m-5=1 | | 1=r/3-3 | | (2x+16)(2x+24)=884 | | 7y=y=40 | | 3/4m+1/2=5/2m-7/4 | | (x+10)+(4×+5)=180 | | 4+3y=-19 | | 6x+40=2x+80 | | 2-6(x/3+7)=x-13 | | 4x+x=3x+14 | | 6x-5-2x+8=12(1/3x+1/4 | | -16t^2+140t+56=0 | | 1=3x=-5+x | | q^2+23q+134=0 | | -5(k+9)-3k=4k+10-14k-1 | | 0=-0.8t^2+10t+2 | | 8(10)+5(y)=40 | | 6x+8x+2x=180-10-10-10 | | 12=n+n/2 | | 1/10· w = 7/9 | | 1/10·w=7/9 |